Predicting large CO2 adsorption in aluminosilicate zeolites for postcombustion carbon dioxide capture.
نویسندگان
چکیده
Large-scale simulations of aluminosilicate zeolites were conducted to identify structures that possess large CO(2) uptake for postcombustion carbon dioxide capture. In this study, we discovered that the aluminosilicate zeolite structures with the highest CO(2) uptake values have an idealized silica lattice with a large free volume and a framework topology that maximizes the regions with nearest-neighbor framework atom distances from 3 to 4.5 Å. These predictors extend well to different Si:Al ratios and for both Na(+) and Ca(2+) cations, demonstrating their universal applicability in identifying the best-performing aluminosilicate zeolite structures.
منابع مشابه
An optimal trapdoor zeolite for exclusive admission of CO2 at industrial carbon capture operating temperatures.
High purity molecular trapdoor chabazite with an optimal Si/Al ratio (1:9) was prepared from fly ash. Gas adsorption isotherms and binary breakthrough experiments show dramatically large selectivities for CO2 over N2 and CH4, which are the highest among physisorbents at operating temperatures suitable for postcombustion carbon capture and natural gas separations.
متن کاملEffect of Particle Size of NaX Zeolite on Adsorption of CO2/CH4
In the present work, the nano-NaX zeolite and micro-NaX zeolite were synthesized via hydrothermal method. Then, the adsorption capacities and isotherms of pure gases CO2 and CH4 on the synthesized zeolite nanoparticles were determined at three temperatures of 288, 298 and 308 K and various pressures from 1 up to 20 bar. Adsorption capacities of CO2 on the nano-sized zeolites NaX were showed to ...
متن کاملMolecular simulation study of the competitive adsorption of H2O and CO2 in zeolite 13X.
The presence of H2O in postcombustion gas streams is an important technical issue for deploying CO2-selective adsorbents. Because of its permanent dipole, H2O can interact strongly with materials where the selectivity for CO2 is a consequence of its quadrupole interacting with charges in the material. We performed molecular simulations to model the adsorption of pure H2O and CO2 as well as H2O/...
متن کاملCarbon Dioxide Capture by Modified UVM-7 Adsorbent
In this study, bimodal meso-porous silica (UVM-7) synthesized and fabricated amino silane modified supports were characterized by powder X-ray diffraction (XRD), N2 adsorption/desorption, transmission electron microscope (TEM), elemental analysis and titration. Capacity of CO2 capture on modified bimodal pore structure silica at 70°C was calculated using breakthrough curves; and it was found th...
متن کاملCarbon dioxide separation with a two-dimensional polymer membrane.
Carbon dioxide gas separation is important for many environmental and energy applications. Molecular dynamics simulations are used to characterize a two-dimensional hydrocarbon polymer, PG-ES1, that uses a combination of surface adsorption and narrow pores to separate carbon dioxide from nitrogen, oxygen, and methane gases. The CO2 permeance is 3 × 10(5) gas permeation units (GPU). The CO2/N2 s...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of the American Chemical Society
دوره 134 46 شماره
صفحات -
تاریخ انتشار 2012